13 Tests with one-sided null and alternative hypotheses

- 1. Review: α -level MP
 - (1) α -level MP

For H_0 : $\theta = \theta_0$ versus H_a : $\theta = \theta_1$

$$\phi(X) = \begin{cases} 1 & \frac{f_1}{f_0} > k \\ r & \frac{f_1}{f_0} = k \\ 0 & \frac{f_1}{f_0} < k \end{cases} \text{ with } E_{\theta_0}[\phi(X)] = \alpha \text{ is an } \alpha \text{-level MP test} \end{cases}$$

- (2) Test in (1) is an unbiased test
 - **Proof.** We need to show $E_{\theta_0}[\phi(X)] \leq E_{\theta_1}[\phi(X)]$. Let $\psi(X) \equiv \alpha$. Then $E_{\theta_0}[\psi(X)] = \alpha \Longrightarrow \psi(X)$ is an α -level test. So the power domination $E_{\theta_1}[\psi(X)] \leq E_{\theta_1}[\phi(X)]$ is true. Hence $E_{\theta_0}[\phi(X)] = \alpha = E_{\theta_1}[\psi(X)] \leq E_{\theta_1}[\phi(X)]$. \Box
- 2. Review: Two $\phi(X)$ s

Suppose $\Lambda = \frac{f_2}{f_1}$ is an increasing function of T(X) for all $\theta_1 < \theta_2$.

(1) $\phi(X)$ with non-decreasing $E_{\theta}[\phi(X)]$

$$\begin{split} \phi(X) &= \begin{cases} 1 \quad T(X) > c \\ r \quad T(X) = c \quad \text{with } E_{\theta_0}[\phi(X)] = \alpha \\ 0 \quad T(X) < c \\ \text{has non-decreasing } E_{\theta}(\phi(X)) \text{ and} \\ \text{if } E_{\theta_0}[\psi(X)] \leq \alpha, \text{ then } E_{\theta}[\psi(X)] \leq E_{\theta}[\phi(X)] \text{ for all } \theta > \theta_0 \end{split}$$

For $H_0: \theta = \theta_0$ versus $H_a: \theta > \theta_0$ the above $\phi(X)$ gives an α -level UMP test. (2) $\phi(X)$ with non-increasing $E_{\theta}[\phi(X)]$

$$\phi(X) = \begin{cases} 1 & T(X) < c \\ r & T(X) = c \text{ with } E_{\theta_0}[\phi(X)] = \alpha \\ 0 & T(X) > \end{cases}$$

has non-increasing $E_{\theta}(\phi(X))$ and
if $E_{\theta_0}[\psi(X)] \le \alpha$, then $E_{\theta}[\psi(X)] \le E_{\theta}[\phi(X)]$ for all $\theta < \theta_0$

For $H_0: \theta = \theta_0$ versus $H_a: \theta < \theta_0$ the above $\phi(X)$ gives an α -level UMP test.

- 3. Tests with one-sided null and alternative hypotheses
 - (1) For $H_0: \theta \leq \theta_0$ versus $H_a: \theta > \theta_0$ $\phi(X)$ in (1) of 2 gives an α -level UMP test
 - **Proof.** $\phi(X)$ gives an α -level test.

Note that $E_{\theta}[\phi(X)]$ is non-decreasing function of θ and $E_{\theta_0}[\phi(X)] = \alpha$.

$$\theta \in H_0 \Longrightarrow \theta \le \theta_0 \Longrightarrow E_{\theta}[\phi(X)] \le E_{\theta_0}[\phi(X)] = \alpha.$$

Thus $\phi(X)$ is an α -level test. $\phi(X)$ is **UMP test.** Note that if $E_{\theta_0}[\psi(X)] \leq E_{\theta_0}[\phi(X)]$, then $E_{\theta}[\psi(X)] \leq E_{\theta}[\phi(X)]$ for all $\theta > \theta_0$. If $\psi(X)$ is also an α -level test, then $E_{\theta_0}[\psi(X)] \leq \alpha = E_{\theta_0}[\psi(X)]$. Hence $E_{\theta}[\psi(X)] \leq E_{\theta}[\psi(X)]$ for all $\theta > \theta_0$. Thus $\phi(X)$ is UMP test. Therefore $\phi(X)$ is an α -level UMP test.

(2) For $H_0: \theta \ge \theta_0$ versus $H_a: \theta > \theta_0$ $\phi(X)$ in (2) of 2 gives an α -level UMP test

Proof. $\phi(X)$ gives an α -level test.

Note that $E_{\theta}[\phi(X)]$ is non-increasing function of θ and $E_{\theta_0}[\phi(X)] = \alpha$.

$$\theta \in H_0 \Longrightarrow \theta \ge \theta_0 \Longrightarrow E_{\theta}[\phi(X)] \le E_{\theta_0}[\phi(X)] = \alpha.$$

Thus $\phi(X)$ is an α -level test. $\phi(X)$ is **UMP test.** Note that if $E_{\theta_0}[\psi(X)] \leq E_{\theta_0}[\phi(X)]$, then $E_{\theta}[\psi(X)] \leq E_{\theta}[\phi(X)]$ for all $\theta < \theta_0$. If $\psi(X)$ is also an α -level test, then $E_{\theta_0}[\psi(X)] \leq \alpha = E_{\theta_0}[\psi(X)]$. Hence $E_{\theta}[\psi(X)] \leq E_{\theta}[\psi(X)]$ for all $\theta < \theta_0$. Thus $\phi(X)$ is UMP test. Therefore $\phi(X)$ is an α -level UMP test.

Ex: For Poisson(λ) find UMP test on H_0 : $\lambda \ge 0.4$ vs H_a : $\lambda < 0.4$ with level 0.05. Suppose n = 10.

$\phi(X) = \left\{ \right.$	$\begin{array}{c} 1 \\ 0.43243 \end{array}$	$\sum_{i=1}^{10} X_i < 1$ $\sum_{i=1}^{10} X_i = 1$ $\sum_{i=1}^{10} X_i > 1$	is UMP test at level 0.05	
l	0			

L14 Generalized Neyman-Pearson lemma

- 1. Essence of Neyman-Pearson lemma
 - (1) Essence of Neyman-Pearson lemma

$$\phi(x) = \begin{cases} 1 & f(x) - g(x) > 0\\ r & f(x) - g(x) = 0\\ 0 & f(x) - g(x) < 0 \end{cases} \text{ with } \int_x \phi(x)g(x) \, dx = c.$$

If $\int_x \psi(x)g(x) \, dx \le c$, then $\int_x \psi(x)f(x) \, dx \le \int_x \phi(x)f(x) \, dx$.

Proof.

of.

$$\int_{x} [\phi(x) - \psi(x)] f(x) dx = \int_{x} [\phi(x) - \psi(x)] [f(x) - g(x) + g(x)] dx$$

$$= \int_{f-g>0} (1 - \psi) (f - g) dx + \int_{f-g=0} (r - \psi) \cdot 0 dx$$

$$+ \int_{f-g<0} (-\psi) (f - g) dx + \int_{x} (\phi - \psi) g dx$$

$$\ge 0.$$

Comments: g(x) is a tool defining a class of functions of ψ and identifying a special one ϕ in the class. f(x) is used in the comparison for ϕ with all other ψ .

(2) Equivalent one

$$\phi(x) = \begin{cases} 1 & f(x) - kg(x) > 0 \\ r & f(x) - kg(x) = 0 \\ 0 & f(x) - kg(x) < 0 \end{cases} \text{ with } k > 0 \text{ and } \int_x \phi(x)g(x) \, dx = c.$$

If $\int_x \psi(x)g(x) dx \le c$, then $\int_x \psi(x)f(x) dx \le \int_x \phi(x)f(x) dx$. **Proof.** Conditions $\int_x \phi(x)g(x) dx = c \iff \int_x \phi(x)kg(x) dx = kc$, and conditions $\int_x \psi(x)g(x) dx \le c \iff \int_x \psi(x)kg(x) dx \le kc$.

(3) Neyman-Pearson lemma

$$\phi(x) = \begin{cases} 1 & f_1 - kf_0 > 0 \\ r & f_1 - kf_0 = 0 \\ 0 & f_1 - kf_0 < 0 \end{cases} \text{ with } k > 0 \text{ and } E_{\theta_0}[\phi(X)] = \alpha.$$

If
$$E_{\theta_0}[\psi(X)] \leq \alpha$$
, then $E_{\theta_1}[\psi(X)] \leq E_{\theta_1}[\phi(X)]$.
Proof. $\int_x \phi(x) f_0(x) dx = E_{\theta_0}[\phi(X)] = \beta_\phi(\theta_0), \int_x \psi(x) f_0(x) dx = E_{\theta_0}[\psi(X)] = \beta_\psi(\theta_0),$
 $\int_x \psi(x) f_1(x) dx = E_{\theta_1}[\psi(X)] = \beta_\psi(\theta_1) \text{ and } \int_x \phi(x) f_1(x) dx = E_{\theta_1}[\phi(X)] = \beta_\phi(\theta_1).$
Comment: $f_1 - k f_0(>=<)0 \iff \frac{f_1}{f_0}(>=<)k.$

2. Generalized Neyman-Pearson lemma

(1) Generalized Neyman-Pearson lemma

$$\phi(x) = \begin{cases} 1 & f(x) - \sum_{i=1}^{m} k_i g_i(x) > 0 \\ r & f(x) - \sum_{i=1}^{m} k_i g_i(x) = 0 \\ 0 & f(x) - \sum_{i=1}^{m} k_i g_i(x) < 0 \end{cases} \text{ with } \int_x \phi(x) \sum_{i=1}^{m} k_i g_i(x) \, dx = c$$

If $\int_x \psi(x) \sum_{i=1}^m k_i g_i(x) \, dx \le c$, then $\int_x \psi(x) f(x) \, dx \le \int_x \phi(x) f(x) \, dx$.

(2) Equivalent form

With $k_i > 0$ for all i = 1, ..., m, the condition $\int_x \phi(x) \sum_{i=1}^m k_i g_i(x) dx = c$ can be replaced by $\int_x \phi(x) g_i(x) dx = c_i, i = 1, ..., m$ and the condition $\int_x \psi(x) \sum_{i=1}^m k_i g_i(x) dx \leq c$ can be replaced by $\int_x \psi(x) g_i(x) dx \leq c_i, i = 1, ..., m$.

3. Test classes

(1) UMP test

UMP test is based on a test class C. ϕ is UMP test in C if $\phi \in C$ and for $\psi \in C$ $E_{\theta}(\psi) \leq E_{\theta}(\phi)$ for all $\theta \in H_a$.

(2) Test classes

 $\begin{array}{l} \alpha \text{-level test class: } \{0 \leq \psi \leq 1 : E_{\theta}(\psi) \leq \alpha \text{ for all } \theta \in H_0\}.\\ \text{Conservative } \alpha \text{-level test class: } \{\psi : E_{\theta}(\psi) < \alpha \text{ for all } \theta \in H_0\}\\ \text{Exact } \alpha \text{-level test class: } \{\psi : E_{\theta}(\psi) \leq \alpha \text{ for all } \theta \in H_0 \text{ and } E_{\theta}(\psi) = \alpha \text{ for some } \theta \in H_0\}\\ \alpha \text{-level similar test class: } \{\psi : E_{\theta}(\psi) \leq \alpha \forall \theta \in H_0 \text{ and } E_{\theta}(\psi) = \alpha \forall \theta \text{ on bounday of } H_0\}.\\ \text{Unbiased test class: } \{\psi : E_{\theta_0}(\psi) \leq E_{\theta_1}(\psi) \text{ for all } \theta_0 \in H_0 \text{ and all } \theta_1 \in H_a\}. \end{array}$